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Abstract— We present an algorithm for maintaining maximal
matching in a graph under addition and deletion of edges. Our data
structure is randomized that takes O(log n) expected amortized
time for each edge update where n is the number of vertices in the
graph. While there is a trivial O(n) algorithm for edge update, the
previous best known result for this problem was due to Ivković and
Llyod[4]. For a graph with n vertices and m edges, they give an
O((n + m)0.7072) update time algorithm which is sublinear only
for a sparse graph.

For the related problem of maximum matching, Onak and
Rubinfeld [6] designed a randomized data structure that achieves
O(log2

n) expected amortized time for each update for maintaining
a c-approximate maximum matching for some large constant c.
In contrast, we can maintain a factor two approximate maximum
matching in O(log n) expected amortized time per update as a
direct corollary of the maximal matching scheme. This in turn also
implies a two approximate vertex cover maintenance scheme that
takes O(log n) expected amortized time per update.

1. INTRODUCTION

In the last decade, there has been considerable research
in Dynamic Graph Algorithms where we want to main-
tain a data structure associated with some property (like
connectivity, transitive closure or matching) under insertion
and deletion of edges. Even for a simple property like
connectivity, it took researchers considerable effort to design
a polylog(n) update time algorithm [2], [3]. In this work, we
address fully dynamic maintenance of maximal matching in
a graph.

Let G = (V, E) be a graph on n vertices and m edges. A
matching in G is a set of edges M ⊆ E such that no two
edges in M share any vertex. A maximum matching is a
matching that contains the largest possible number of edges.
A matching is said to be a maximal matching if it cannot be
strictly contained in any other matching. It is well known
that a maximal matching guarantees a 2-approximation of
the maximum matching. Ivković and Llyod [4] designed the
first fully dynamic algorithm for maximal matching with
O((n + m)0.7072) update time. In contrast, there exists a
much larger body of work for maximum matching.

Sankowski [9] gave an algorithm for the maintaining max-
imum matching which processes each update in O(n1.495)
time. Alberts and Henzinger [1] gave an expected O(n)
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update time algorithm for maintaining maximum matching
with respect to a restricted random model. Therefore the
goal of a polylog(n) update time dynamic maximum
matching algorithm appears to be too ambitious. In par-
ticular, even achieving a o(

√
n) bound on the update time

would imply an improvement of the longstanding O(m
√

n)
bound of the best static algorithm for maximum matching
due to Micali and Vazirani [5]. So approximation appears to
be inevitable if we wish to achieve really fast update time
for maintaining matching. Recently, Onak and Rubinfeld
[6] presented a randomized algorithm for maintaining a
c-approximate (for some large constant c) matching in a
dynamic graph that takes O(log2 n) amortized time for each
edge update. This matching is not necessarily maximal, as
a maximal matching would imply a factor two approximate
maximum matching. In particular, they pose the following
question -

“Our approximation factors are large constants. How
small can they be made with polylogarithmic update time
? Can they be made 2 ? Can the approximation constant be
made smaller than two for maximum matching ?..”

We resolve one of their central questions by presenting
a fully dynamic algorithm for maximal matching which
achieves O(log n) expected amortized time per edge inser-
tion or deletion. Our bound also implies a similar result for
maintaining a two approximate vertex cover.

2. AN OVERVIEW

Let M denote the matching of the graph at any moment.
Every edge of M is called a matched edge and an edge in
E\M is called an unmatched edge. For an edge (u, v) ∈M,
we define u to be the mate of v and v to be the mate of u.
For a vertex x if there is an edge incident to it from M,
then x a matched vertex; otherwise it is free or unmatched.

In order to maintain a maximal matching, all that is
required is to ensure that there is no edge (u, v) in the
graph such that both u and v are free with respect to the
matching. From this observation, an obvious approach will
be to maintain the information for each vertex whether it
is matched or free at any stage. When an edge (u, v) is
inserted, add (u, v) to the matching if u and v are free.
For a case when an unmatched edge (u, v) is deleted,
no action is required. Otherwise, for both u and v we



search their neighborhood for any free vertex and update
the matching accordingly. It follows that each update takes
O(1) computation time except when it involves deletion of
a matched edge; in this case the computation time is of
the order of the sum of the degrees of the two vertices.
So this trivial algorithm is quite efficient for small degree
vertices, but is expensive for large degree vertices. An
alternate approach to handling deletion of a matched edge
is to use a simple randomized technique - a vertex u is
matched with a randomly chosen neighbor v. Following
the standard adversarial model, it can be observed that an
expected deg(u)/2 edges incident to u will be deleted before
deleting the matched edge (u, v). So the expected amortized

cost per edge deletion for u is roughly O
(

deg(u)+deg(v)
deg(u)/2

)
.

If deg(v)� deg(u), then this update time can be as bad as
the one obtained by the trivial algorithm mentioned above;
but if deg(u) is high, the update time is better. We combine
the idea of choosing a random mate and the trivial algorithm
suitably as follows. We introduce the notion of ownership
of edges wherein we assign an edge to that endpoint which
has higher degree. We maintain a partition of the set of
vertices into two levels : 0 and 1. Level 0 consists of vertices
which own few edges and we handle the updates in level 0
using the trivial algorithm. The level 1 consists of vertices
(and their mates) which own large number of edges and
we use the idea of random mate to handle their updates. In
particular, a vertex chooses a random mate from its set of
owned edges which ensures that it selects a neighbor having
a lower degree. This is the basis of our first fully dynamic
algorithm which achieves expected amortized O(

√
n) time

per update.
A careful analysis of the O(

√
n) update time algorithm

suggests that a finer partition of vertices may help in
achieving a better update time. This leads to our final
algorithm which achieves expected amortized O(log n) time
per update. More specifically, our algorithm maintains an
invariant that can be informally summarized as follows.

Each vertex tries to rise to a level higher than its current
level if upon reaching that level, there are sufficiently large
number of edges incident on it from lower levels. Once a
vertex reaches a new level, it selects a random edge from
this set and makes it matched.

2.1. Related Work

Onak and Rubinfeld [6] also pursue an approach based on
use of randomization to achieve efficient updates and main-
tain a partitioning of vertices into a hierarchy of O(log n)
level that is along the lines of Parnas and Ron [8]. The
algorithm of Onak and Rubinfeld [6] takes a global approach
in building level i of this hierarchy as follows. For level i,
they consider the subgraph consisting of vertices Vi and their
neighbors and argue that a random subset of these edges
form a matching of size |Vi|/a with high probability for
some constant a > 1. The approximation factor a is an

outcome of some probabilistic calculations using Chernoff
bounds that is chosen to be a sufficiently large. Therefore, it
is unlikely that any simple variation of this global approach
can lead to a maximal matching.

We also maintain a hierarchical partitioning of vertices
but it is distinctly different from the scheme of Onak and
Rubinfeld [6]. Our algorithm takes a vertex centric approach
as described above for maintaining matching at each level.
Our algorithm achieves significantly better results than [6],
i.e., a guaranteed factor 2 matching. The use of random-
ization is limited to choice of a random matching vertex
and the O(log n) expected update time can be derived using
pairwise independent random numbers.

2.2. Organization of the paper

For a gentle exposition of the ideas and techniques, we
first describe a fully dynamic algorithm for maximal match-
ing which has 2 levels and achieves expected amortized
O(
√

n) time per update. This is followed by our final fully
dynamic algorithm which has log n levels and achieves
expected amortized O(log n) time per update (Theorem 4.1).
All logarithms in this paper are with base 2 unless mentioned
otherwise.

3. FULLY DYNAMIC ALGORITHM WITH EXPECTED

AMORTIZED O(
√

n) TIME PER UPDATE

The algorithm maintains a partition of the set of vertices
into two levels. We shall use LEVEL(u) to denote the level
of a vertex u. We define LEVEL(u, v) for an edge (u, v) as
max(LEVEL(u), LEVEL(v)).

We now introduce the concept of ownership of the edges.
Each edge present in the graph will be owned by one or both
of its end points as follows. If both the endpoints of an edge
are at level 0, then it is owned by both of them. Otherwise it
will be owned by exactly that endpoint which lies at higher
level. If both the endpoints are at level 1, the tie will be
broken suitably by the algorithm. As the algorithm proceeds,
the vertices will make transition from one level to another
and the ownership of edges will also change accordingly. Let
Ou denote the set of edges owned by u at any moment of
time. Each vertex u ∈ V will keep the set Ou in a dynamic
hash table [7] so that each search or deletion on Ou can
be performed in worst case O(1) time and each insertion
operation can be performed in expected O(1) time. This hash
table is also suitably augmented with a linked list storing Ou

so that we can retrieve all edges of set Ou in O(|Ou|) time.
The algorithm maintains the following two invariants

throughout.

1) Every vertex at level 1 is matched. Every free vertex
at level 0 has all its neighbors matched.

2) Every vertex at level 0 owns less than
√

n edges at
any moment of time.

The first invariant implies that the matchingMmaintained is
maximal at each stage. A vertex u is said to be a dirty vertex



at a moment if at least one of its invariants does not hold. In
order to restore the invariants, each dirty vertex might make
transition to some new level and do some processing. This
processing will firstly involve owning or disowning some
edges depending upon whether the level of the vertex has
risen or fallen. Thereafter, the vertex will execute RANDOM-
SETTLE or NAIVE-SETTLE to settle down at its new level.
The pseudocode for insert and delete operation is given in
Figure 1 and Figure 2.

Handling insertion of an edge: Let (u, v) be the edge
inserted. If either u or v are at level 1, there is no violation
of any invariant. So the only processing that needs to be
done is to assign (u, v) to Ou if LEVEL(u) = 1, and to Ov

otherwise. This takes O(1) time. However, if both u and
v are at level 0, then we execute HANDLING-INSERTION

procedure which does the following (see Figure 1).

Procedure HANDLING-INSERTION(u, v)

if u and v are FREE then M←M∪ {(u, v)};
if |Ov| > |Ou| then swap(u, v);
if |Ou| =

√
n then

x← RANDOM-SETTLE(u);
if x �= NULL then NAIVE-SETTLE(x);
if w was previous mate of u then
NAIVE-SETTLE(w);

Procedure RANDOM-SETTLE(u): Finds a random
edge (u, v) from the owned edges of u and returns
the previous mate of v

Let (u, v) be a uniformly randomly selected edge
from Ou;
if v is matched then

x← MATE(v);
M←M\{(v, x)}

else
x← NULL;

M←M∪ {(u, v)};
LEVEL(u)← 1; LEVEL(v)← 1;
return x;

Procedure NAIVE-SETTLE(u) : Finds a free ver-
tex adjacent to u deterministically

for each (u, x) ∈ Ou do
if x is free then
M←M∪ {(u, x)};
Break;

Figure 1. Procedure for handling insertion of an edge (u, v) where
LEVEL(u) = LEVEL(v) = 0.

If u and v are free, then insertion of (u, v) has violated
the first invariant for u as well as v. We restore it by adding
(u, v) to M. Note that insertion of (u, v) also leads to
increase |Ou| and |Ov| by one. We process that vertex out

of u and v which owns larger number of edges; let u be that
vertex. If |Ou| =

√
n, the invariant 2 has got violated. We

execute RANDOM-SETTLE(u); as a result u moves to level 1
and gets matched to some vertex, say y, selected randomly
uniformly from Ou. If w and x were respectively the earlier
mates of u and y at level 0, then the matching of u with y has
rendered w and x free. So to restore invariant 1, we execute
NAIVE-SETTLE(w) and NAIVE-SETTLE(x). This finishes the
processing of insertion of (u, v). Note that when u rises to
level 1, |Ov| remains unchanged. Since both the invariants
for v were satisfied before the current edge update, it follows
that the second invariant for v still remains intact.

Handling deletion of an edge: Let (u, v) be an edge that
is deleted. If (u, v) /∈M, both invariants are still intact. So
let us consider the nontrivial case when (u, v) ∈M. In this
case, the deletion of (u, v) has made u and v free. Therefore,
potentially the first invariant might have got violated for u
and v, making them dirty. We do the following processing
in this case.

If edge (u, v) was at level 0, then following the deletion
of (u, v), vertex u executes NAIVE-SETTLE(u), and then
vertex (v) executes NAIVE-SETTLE(v). This restores the first
invariant and the vertices u and v are clean again. If edge
(u, v) was at level 1, then u is processed using the procedure
shown in Figure 2 which does the following (v is processed
similarly).

Procedure HANDLING-DELETION(u,v)

foreach (u, w) ∈ Ou and LEVEL(w) = 1 do
move (u, w) from Ou to Ow;

if |Ou| ≥
√

n then
x← RANDOM-SETTLE(u);
if x �= NULL then NAIVE-SETTLE(x);

else
LEVEL(u)← 0;
NAIVE-SETTLE(u);
foreach (u, w) ∈ Ou do

if |Ow| ≥
√

n then
x← RANDOM-SETTLE(w);
if x �= NULL then NAIVE-SETTLE(x);

Figure 2. Procedure for processing u when (u, v) ∈ M is deleted and
LEVEL(u)=LEVEL(v)=1.

Firstly u disowns all its edges whose other endpoint is at
level 1. If |Ou| is still greater than or equal to

√
n, then u

stays at level 1 and executes RANDOM-SETTLE(u). If |Ou|
is less than

√
n, u moves to level 0 and executes NAIVE-

SETTLE(u). Note that the transition of u from level 1 to 0
leads to an increase in the number of edges owned by each
of its neighbors at level 0. The second invariant for each such
neighbor, say w, may get violated if |Ow| =

√
n, making

w dirty. So we scan each neighbor of u sequentially and



:

:

LEVEL 1

LEVEL 0

natural epoch

induced epoch

Time
epoch of (u, w)

epoch of (u, w)

epoch of (u, v)

epoch of (u, v)

epoch of (v, x)

epoch of (v, x)

Figure 3. Epochs at level 0 and 1; the creation of an epoch at level 1 can destroy at most two epochs at level 0.

for each dirty neighbor w (that is, |Ow| ≥
√

n), we execute
RANDOM-SETTLE(w) to restore the second invariant. This
finishes the processing of deletion of (u, v).

It can be observed that, unlike insertion of an edge, the
deletion of an edge may lead to creating a large number
of dirty vertices. This may happen if the deleted edge is a
matched edge at level 1 and at least one of its endpoints
make transition to level 0.

Remark 3.1: After every update, the two endpoints of
each matched edge will be present at the same level. In
other words, edges having endpoints at distinct levels will
never be part of the maximal matching M maintained by
our algorithm.

3.1. Analysis of the algorithm

We analyze the algorithm using the concept of matched
epochs, which we explain as follows. While processing
the sequence of insertions and deletions of edges, some
matched edges become unmatched and some unmatched
edges become matched. Consider any edge (u, v), and let
it be a matched edge at time t. Then the epoch of (u, v) is
the maximal continuous time period containing t for which
it remains in M. The duration of the epoch associated
with (u, v) will be the number of updates which u or v
undergo during the epoch. The entire life span of an edge
(u, v) would consist of a sequence of (matched) epochs of
(u, v) separated by the continuous periods when (u, v) is
not matched.

In order to bound the expected computation time per
update, first we calculate the computation involved in an
epoch at level 0 and 1.

Consider an edge (u, v) ∈ M at any moment. If
LEVEL(u, v) = 0, then the creation of the epoch associated
with (u, v) involves scanning Ou (or Ov) to find the free
vertex v. An equivalent amount of work is required at the
termination of this epoch. Being at level 0, u as well as
v own less than

√
n edges each. So the total computation

involving an epoch at level 0 is O(
√

n). Let us consider the
case when LEVEL(u, v) = 1. Suppose the epoch got created
by vertex u.

If the epoch was created when u rises from level 0 to level
1, then |Ou| is exactly equal to

√
n, and |Ov| is at most

√
n.

Creation of this epoch would require transfer of u (as well
as v) from level 0 to level 1, eliminating (u, x) from Ox for
each (u, x) ∈ Ou followed by eliminating (v, x) from Ox

for each (v, x) ∈ Ov . So the total computation performed
during creation of the epoch is O(

√
n).

Another way for the creation of an epoch at level 1 is
when the previous epoch of u (say epoch of (u, w)) is
destroyed at level 1. As a result, u disowns edges at level
1 and if it still has at least

√
n edges it selects a random

vertex v and starts (new) epoch of (u, v). As we can see
that there are two tasks involved in this process. The first
task involves disowning the edges of u; the computational
cost of this task is attributed to the termination of the old
epoch of (u, w). The other task involves transfer of v from
level 0 to level 1, and eliminating (v, x) from Ox for each
(v, x) ∈ Ov . The computational cost of this task is attributed
to the creation of the epoch of (u, v). Since Ov is at most√

n, the computational cost performed during the creation
of the epoch of (u, v) in this case is again O(

√
n).

At the termination of the epoch, the computation involves
disowning edges incident on u and v from vertices at level
1. This computation is of the order of |Ou| + |Ov| which
can be bounded by O(n). Excluding the two updates that
cause creation and termination of an epoch of (u, v), every
other edge update on u and v during the epoch is handled
in just O(1) time. Therefore, we shall focus only on the
amount of computation performed at the time of creation
and termination of an epoch. From our analysis, it follows
that the amount of computation involved in an epoch at level
1 and level 0 are O(n) and O(

√
n) respectively.

An epoch corresponding to some edge, say (u, v), gets
terminated because of exactly one of the following causes.

(i) if (u, v) is deleted from the graph.
(ii) u (or v) get matched to some other vertex leaving its

current mate free.

An epoch will be called a natural epoch if it is terminated
due to cause (i); otherwise it will be called an induced epoch.
Induced epoch can be seen as a premature termination of an



epoch since, unlike natural epoch, the matched edge is not
actually deleted from the graph when an induced epoch is
terminated.

It follows from the algorithm described above that every
epoch at level 1 is a natural epoch whereas an epoch at level
0 can be natural or induced depending on the cause of its
termination. Furthermore, each induced epoch at level 0 can
be associated with a natural epoch at level 1 whose creation
led to the termination of the former. In fact, there can be at
most two induced epochs at level 0 which can be associated
with an epoch at level 1. It can be explained as follows (see
Figure 3).

Consider an epoch at level 1 associated with an edge, say
(u, v). Suppose it was created by vertex u. If u was already
matched at level 0, let w �= v be its mate. Similarly, if v
was also matched already, let x �= u be its current mate at
level 0. So matching u to v terminates the epoch of (u, w)
as well as the epoch of edge (v, x) at level 0. We charge
the overall cost of these two epochs to the epoch of (u, v)
which destroys them. So the overall computation charged to
an epoch of (u, v) at level 1 is O(n + |Ox| + |Ow|). This
cost is indeed O(n) since each of |Ox| and |Ow| is less than√

n.

Lemma 3.2: The computation charged to a natural epoch
at level 1 is O(n) and the computation charged to a natural
epoch at level 0 is O(

√
n).

In order to analyze our algorithm, we just need to get a
bound on the computation charged to all natural epochs
at level 0 and level 1 during a sequence of updates. In
particular, we need to bound the computation charged to all
the natural epochs which get destroyed during the updates
and the epochs which are alive at the end of all the updates.

3.1.1. Bounding the computation charged to the natural
epochs destroyed: Let t be the total number of updates.
Each natural epoch at level 0 which is destroyed can be
assigned uniquely to the deletion of its matched edge. Hence
it follows from Lemma 3.2 that the computation charged to
all natural epochs destroyed at level 0 during t updates is
O(t
√

n).

Now we shall analyze the number of epochs destroyed
at level 1. Let us define the duration of the epoch as the
number of edges incident on u which are deleted during the
epoch. Consider an epoch at level 1 created by some vertex,
say u. At the time of its creation u must be owning a set of
at least

√
n edges, and u selected a matched edge out of its

owned edges uniformly randomly and independent of other
epochs. This implies the following lemma.

Lemma 3.3: The probability that a given epoch at level 1
has duration at most i is bounded by i√

n
.

Let Xt be the random variable denoting the number of
epochs at level 1 destroyed during a sequence of t updates.

Lemma 3.4: For any given q ≥ 1,

Pr[Xt = q] ≤
(

4et

q
√

n

)q/2

Proof: If there are q epochs destroyed during t updates,
at least half of them have duration ≤ 2t/q. Hence, Pr[Xt =
q] is bounded by the probability that there are at least q/2
epochs of duration at most 2t

q . So, using Lemma 3.3 and
exploiting the independence among the epochs,

Pr[Xt = q] ≤
(

q

q/2

)(
2t

q
√

n

)q/2

≤
(

4et

q
√

n

)q/2

For the last inequality we used
(

q
q/2

) ≤ (
eq
q/2

)i

= (2e)i.

We use Lemma 3.4 to analyze E[Xt] and deviation of Xt.
Lemma 3.5: For any t > 0, E[Xt] = O (t/

√
n).

Proof: Let us set q0 = 5et/
√

n. For any q > q0, it
follows from Lemma 3.4 that Pr[Xt = q] ≤ (4/5)q/2.
Hence,

Pr[Xt ≥ q] =
∑
q′≥q

Pr[Xt = q′] < 10

(
4

5

)q/2

(1)

Now we use the following well known equality which holds
since Xt takes nonnegative integral values only.

E[Xt] =
∑
q≥1

Pr[Xt ≥ q] ≤ q0 +
∑
q>q0

Pr[Xt ≥ q] (2)

Using Equations 1 and 2, it follows that E[Xt] = 5et/
√

n+
O(1) = O(t/

√
n).

Lemma 3.6: For any t > 0 Xt is O(t/
√

n + log n) with
very high probability.

Proof: We choose q0 = 4 (log n + 4et/
√

n). It follows
from Lemma 3.4 that for any q ≥ q0, Pr[Xt = q] is of
the form bq where base b < 1/2. Hence Pr[Xt ≥ q0] is
bounded by a geometric series with the first term < 2−q0 and
the common ratio less than 1/2. Furthermore q0 > 4 log n,
hence Pr[Xt ≥ q0] is bounded by 2/n4. Hence Xt is
bounded by O(t/

√
n + log n) with high probability.

Notice that the proofs of Lemmas 3.5 and 3.6 rely heavily on
the total independence of random numbers used for selecting
random mates. However, similar bound on E[Xt] can be
derived even if we assume only pairwise independence
between the random numbers used (see Appendix for an
alternate proof of Lemma 3.5).

Now, recall from Lemma 3.2 that each natural epoch
destroyed at level 1 has O(n) computation charged to it.
So Lemmas 3.5 and 3.6, when combined together, imply
the following lemma.

Lemma 3.7: The computation cost charged to all the
natural epochs which get destroyed during any sequence of
t updates is O(t

√
n) in expectation and O(t

√
n + n log n)

with high probability.



Let us now analyze the cost charged to all those epochs
which are alive at the end of t updates. Note that each vertex
is involved in at most one alive epoch. It thus follows that
the computation cost charged to all the alive epochs at any
instance is O(t). During any sequence of t updates, the total
number of epochs created is equal to the number of epochs
destroyed and the number of epochs that are alive at the
end of t updates. Hence using Lemma 3.7 we can state the
following theorem.

Theorem 3.1: Starting with a graph on n vertices and no
edges, we can maintain maximal matching for any sequence
of t updates in O(t

√
n) time in expectation and O(t

√
n +

n log n) with high probability.

3.2. On improving the update time beyond O(
√

n)

In order to extend our 2-LEVEL algorithm for getting
better update time, it is worth exploring the reason un-
derlying O(

√
n) update time guaranteed by our 2-LEVEL

algorithm. For this purpose, let us examine the second
invariant more carefully. Let α(n) be the threshold for the
maximum number of edges that a vertex at level 0 can own.
Consider an epoch at level 1 associated with some edge, say
(u, v). The computation associated with this epoch is of the
order of the number of edges u and v own which can be
Θ(n) in the worst case. However, the expected duration of
the epoch is of the order of the minimum number of edges u
can own at the time of its creation, i.e., Θ(α(n)). Therefore,
the expected amortized computation per edge deletion for an
epoch at level 1 is O(n/α(n)). Balancing this with the α(n)
update time at level 0, yields α(n) =

√
n.

In order to improve the running time of our algorithm,
we need to decrease the ratio between the maximum and
the minimum number of edges a vertex can own during an
epoch at any level. It is this ratio that actually bounds the
expected amortized time of an epoch. This insight motivates
us for having a finer partition of vertices : the number of
levels should be increased to O(log n) instead of just 2.
When a vertex creates an epoch at level i, it will own at
least 2i edges, and during the epoch it will be allowed to
own at most 2i+1−1 edges. As soon as it starts owning 2i+1

edges, it should migrate to higher level. By following these
guidelines, notice that the ratio of maximum to minimum
edges owned by a vertex during an epoch gets reduced from√

n to a constant, which is what we aimed for.
We pursue the approach sketched above and some new

ideas in the following section. This leads to a fully dynamic
algorithm for maximal matching which achieves expected
amortized O(log n) update time per edge insertion or dele-
tion.

4. FULLY DYNAMIC ALGORITHM WITH EXPECTED

AMORTIZED O(log n) TIME PER UPDATE

The fully dynamic algorithm maintains a partition of
vertices among �log n�+ 2 levels. The levels are numbered

from −1 to L0 = �log n�. Note that the level starts from
-1 and not 0. We again use the notion of ownership of
edges which is slightly different from the one used in 2-
LEVEL algorithm. Each edge is owned by exactly one of
its endpoints. In particular, the endpoint at the higher level
always owns the edge. If the two endpoints are at the
same level, then the tie is broken suitably by the algorithm.
Like the 2-LEVEL algorithm, each vertex u will maintain
a dynamic hash table storing the edges Ou owned by it.
In addition, the generalized fully dynamic algorithm will
maintain the following data structure for each vertex u. For
each i ≥ LEVEL(u), let E i

u be the set of all those edges
incident on u from vertices at level i and are not owned by
u. For each vertex u and level i ≥ LEVEL(u), the set E i

u

will be maintained in a dynamic hash table. Note that the
onus of maintaining E i

u will not be on u. In fact, for any
edge (u, v) ∈ E i

u, it will be v which will be responsible for
the maintenance of (u, v) in E i

u since (u, v) ∈ Ov .

4.1. Invariants and a basic subroutine used by the algorithm

As can be seen from the 2-level algorithm, it pays for each
vertex u to get settled at a higher level once it owns a large
number of edges. Pushing this idea still further, our fully
dynamic algorithm will allow a vertex to rise to a higher
level if it can own sufficiently large number of edges after
moving there. In order to formally define this approach, we
introduce an important notation here.

For a vertex v with LEVEL(v) = i,

φv(j) =

{ |Ov|+
∑

i≤k<j |Ek
v | if j > i

0 otherwise

In other words, for any vertex v at level i and any j > i,
φv(j) denote the number of edges which v can own if v
rises to level j. Our algorithm will be based on the following
strategy. If a vertex v has φv(j) ≥ 2j , then v would rise to
the level j. In case, there are multiple levels to which v can
rise, v will rise to the highest such level. With this key idea,
we now describe the two invariants which our algorithm will
maintain.

1) Every vertex at level ≥ 0 is matched and every vertex
at level -1 is free.

2) For each vertex v and for all j > LEVEL(v), φv(j) <
2j holds true.

The second invariant implies that a vertex at level -1 will
have no neighbor at level -1. This fact together with the
first invariant imply that the matching maintained by the
algorithm will indeed be a maximal matching. In fact, similar
to the 2-LEVEL algorithm, the endpoints of each matched
edge will lie at the same level. Figure 4 depicts a snapshot
of the algorithm. The second invariant captures the key idea
described above - after processing every update there is no
vertex which fulfills the criteria of rising. An edge update
may lead to violation of the invariants mentioned above
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Figure 4. A snapshot of the algorithm on K9: all vertices are matched(
thick edges) except vertex x at level -1. Vertex v is the owner of just the
edge (v, x). φv(2) = 2 < 22 and φv(3) = 4 < 23, so v cannot rise to a
higher level.

and the algorithm basically restores these invariants. This
may involve rise or fall of vertices. Notice that the second
invariant of a vertex is influenced by the rise and fall of
its neighbors. We now state and prove two lemmas which
capture this influence in precise words.

Lemma 4.1: Consider a vertex u at level k for which
both invariants hold. The rise of any neighbor, say v, cannot
violate the second invariant for u.

Proof: Since the invariants hold true for u before rise
of v, so φu(i) < 2i for all i > k. It suffices if we can show
that φu(i) does not increase for any i due to the rise of v.
We show this as follows.

Let vertex v rises from level j to �. If � ≤ k, the edge
(u, v) continues to remain in Ou, and so there is no change
in φu(i) for any i. Let us consider the case when � > k. The
rise of v from j to � causes removal of (u, v) from Ou (or Ej

u

if j ≥ k) and insertion to E�
u. As a result φu(i) decreases by

one for each i in [max(j, k)+1, �], and remains unchanged
for all other values of i.

Lemma 4.2: Consider a vertex u at level k for which both
invariants hold. Then any fall of one of its neighbors, say v,
from level j to j − 1 increases φu(j) by at most one.

Proof: In case k ≥ j, there is no change in φu(i) for any
i due to fall of v. So let us consider the case j > k. In this
case, the fall of v from level j to j−1 leads to the insertion
of (u, v) in Ej−1

u and deletion from Ej
u. Consequently, φu(i)

increases by one only for i = j and remains unchanged for
all other values of i.

In order to detect any violation of the second invariant
for a vertex v due to rise or fall of its neighbors, we shall
maintain {φv(i)|i ≤ L0} in an array φv[] of size L0 + 2.
The updates on this data structure during the algorithm will
involve the following two types of operations.
• DECREMENT-φ(v, I): this operation decrements φv(i)

by one for all i in interval I . This operation will be
executed when some neighbor of v rises.

• INCREMENT-φ(v, i): this operation increases φv(i)
by one. This operation will be executed when some
neighbor of v falls from i to i− 1.

It can be seen that a single DECREMENT-φ(v, I) operation
takes O(|I|) time which is O(log n) in the worst case. On the
other hand any single INCREMENT-φ(v, i) operation takes
O(1) time. However, since φv(i) is 0 initially and is non-
negative always, we can conclude the following.

Lemma 4.3: The computation cost of all DECREMENT-
φ() operations is upper-bounded by the computation cost of
all INCREMENT-φ() operations during the algorithm.

Observation 4.1: It follows from Lemma 4.3 that we just
need to analyze the computation involving all INCREMENT-
φ() operations since the computation involved in DECRE-
MENT-φ() operations is subsumed by the former.

Procedure GENERIC-RANDOM-SETTLE(u, i)

if LEVEL(u) < i then //u owns edges till it

reaches level i

for each j = LEVEL(u) to i− 1 do
for each (u, w) ∈ Ej

u do
transfer (u, w) from Ej

u to E i
w;

transfer (u, w) from Ow to Ou;
DECREMENT-φ(w, [j + 1, i]);

Let (u, v) be a uniformly randomly selected edge
from Ou;
if v is matched then

x← MATE(v);
M←M\{(v, x)}

else
x← NULL

for each j = LEVEL(v) to i− 1 do //v rises to

level i and thus owns edges incident from

vertices at levels LEVEL(v) to i− 1

for each (v, w) ∈ Ej
v do

transfer (v, w) from Ej
v to E i

w;
transfer (v, w) from Ow to Ov;
DECREMENT-φ(w, [j + 1, i]);

M←M∪ {(u, v)};
LEVEL(u)← i; LEVEL(v)← i;
return x;

Figure 5. Procedure used by a free vertex u to settle at level i.

If any invariant of a vertex, say u, gets violated, it might
rise or fall, though in some cases, it may still remain at
the same level. However, in all these cases, eventually the
vertex u will execute the procedure, GENERIC-RANDOM-
SETTLE, shown in Figure 5. This procedure is essentially a
generalized version of RANDOM-SETTLE(u) which we used
in the 2-level algorithm. GENERIC-RANDOM-SETTLE(u, i)
starts with moving u from its current level (LEVEL(u)) to
level i. If level i is higher than the previous level of u,



u acquires the ownership of all the edges whose endpoints
lie at the level ∈ [LEVEL(u), i − 1]. For each such edge
(u, v) that is now owned by u, we perform DECREMENT-
φ(v, [LEVEL(v) + 1, i]) to reflect that the edge is now
owned by vertex u which has moved to level i. Henceforth,
the procedure then resembles RANDOM-SETTLE. It finds a
random edge (u, v) from Ov and moves v to level i. The
procedure returns the previous mate of v, if v was matched.

Lemma 4.4: Consider a vertex u executing GENERIC-
RANDOM-SETTLE(u, i) and selecting a mate v. Excluding
the time spent in DECREMENT−φ operations, the computa-
tion time of this procedure is of the order of |Ou| + |Ov|
where Ou and Ov is the set of edges owned by u and v just
at the end of the procedure.

4.2. Handling edge updates by the fully dynamic algorithm

Our fully dynamic algorithm will employ a generic pro-
cedure called PROCESS-FREE-VERTICES. The input to this
procedure is a sequence S consisting of ordered pairs of the
form (x, k) where x is a free vertex at level k ≥ 0. Observe
that the presence of free vertices at level ≥ 0 implies
that matching M is not necessarily maximal. In order to
preserve maximality of matching, the procedure PROCESS-
FREE-VERTICES restores the invariants of each such free
vertex. We now describe our fully dynamic algorithm.

Handling deletion of an edge: Consider deletion of an
edge, say (u, v). For each j > max(LEVEL(u), LEVEL(v)),
we decrement φu(j) and φv(j) by one. If (u, v) is an
unmatched edge, no invariant gets violated. Hence noth-
ing needs to be done except deleting the edge (u, v)
from the data structures of u and v. Otherwise, let k =
LEVEL(u) = LEVEL(v). We execute Procedure PROCESS-
FREE-VERTICES(〈(u, k), (v, k)〉).

Handling insertion of an edge: Consider insertion of
an edge, say (u, v). We check if the second invariant
has got violated for either of u or v. The invariant may
get violated for u (likewise v) if there is any integer
i > max(LEVEL(u), LEVEL(v)), such that φu(i) was 2i− 1
just before the insertion of edge (u, v). In case there are
multiple such integers, let imax be the largest such integer.
We increment φu(�) and φv(�) by one for each � > imax.
To restore the invariant, u leaves its current mate, say w,
and rises to level imax. We execute GENERIC-RANDOM-
SETTLE(u, imax), and let x be the vertex returned. Let j
and k be respectively the levels of w and x. Note that x and
w are two free vertices now. We execute PROCESS-FREE-
VERTICES(〈(x, k), (w, j)〉).
Remark 4.5: If the insertion of edge (u, v) violates the
second invariant for both u and v, we select that vertex
which can rise to the higher level to restore its invariant and
process that vertex.

4.2.1. Description of Procedure PROCESS-FREE-
VERTICES: The procedure receives a sequence S of
ordered pairs (x, i) such that x is a free vertex at level

Procedure PROCESS-FREE-VERTICES(S)

for each (x, i) ∈ S do ENQUEUE(Q[i], x);
for i = L0 to 0 do

while Q[i] �= ∅ do
v ← DEQUEUE(Q[i]);
if FALLING(v) then //v falls to i− 1

LEVEL(v)← i− 1;
ENQUEUE(Q[i− 1], v);
φv(i)← |Ov|;
for each u ∈ Ov do

transfer (u, v) from E i
u to E i−1

u ;
INCREMENT-φ(u, i);
if φu(i) ≥ 2i then //u rises to i

x← GENERIC-RANDOM-
SETTLE(u, i);
if x �= NULL then

�← LEVEL(x);
ENQUEUE(Q[�], x);

else //v settles at level i

x← GENERIC-RANDOM-SETTLE(v, i);
if x �= NULL then

�← LEVEL(x);
ENQUEUE(Q[�], x);

Function FALLING(v)

i← LEVEL(v);
for each (u, v) ∈ Ov such that LEVEL(u) = i do
//v disowns all edges at level i

transfer (u, v) from Ov to Ou;
transfer (u, v) from E i

u to E i
v;

if |Ov| < 2i then return TRUE else return FALSE;

Figure 6. Procedure for processing free vertices given as a sequence S
of ordered pairs (x, i) where x is a free vertex at LEVELi.

i. It processes the free vertices in the decreasing order of
their levels starting from L0. We give an overview of this
processing at level i. For a free vertex at level i, if it owns
sufficiently large number of edges, then it settles at level
i and gets matched by selecting a random edge from the
edges owned by it. Otherwise the vertex falls down by one
level. Notice that the fall of a vertex from level i to i − 1
may lead to rise of some of its neighbors lying at level < i.
However, as follows from Lemma 4.2, this rise will be only
to level i. After these rising vertices settle at level i, we
move onto level i − 1 and proceed similarly. Overall, the
entire process can be seen as a wave of free vertices falling
level by level. Eventually this wave of free vertices reaches
level -1 and fades away ensuring maximal matching. With
this overview, we now describe the procedure in more
details. Its complete pseudocode is given in Figure 6.

The procedure uses an array Q of size L0 +2, where Q[i]



is a pointer to a queue (initially empty). For each ordered
pair (x, k) ∈ S, it inserts x into queue Q[k]. The procedure
executes a for loop from L0 down to 0 where the ith iteration
extracts and processes the vertices of queue Q[i] one by one
as follows. Let v be a vertex extracted from Q[i]. First we
execute the function FALLING(v) which does the following.
v disowns all its edges whose other endpoint lies at level
i. If v owns less than 2i edges then it is decided that v
has to fall, otherwise v will continue to stay at level i. In
case v has to stay at level i, v executes GENERIC-RANDOM-
SETTLE and selects a random mate, say w, from level j < i
(if w is present in Q[j] then it is removed from it and is
raised to level i). If x was the previous mate of w, then x is
a falling vertex. Vertex x gets added to Q[j]. This finishes
the processing of v. Note that this processing of v does not
change φu for any neighbor u of v. Furthermore, the rise
of w does not lead to the violation of any invariant due to
Lemma 4.1. Let us discuss the more interesting case when
v owns less than 2i edges and has to fall. In this case, v
falls to level i − 1 and is inserted to Q[i − 1]. This fall
leads to increase φu(i) by one for each neighbor u of v
lying at level lower than i (see Lemma 4.2). In case φu(i)
has become 2i, u has to rise to level i and is processed as
follows. u executes GENERIC-RANDOM-SETTLE and selects
a random mate, say w from level j < i. If w was in Q[j]
then it is removed from it. If x was the previous mate of w,
then x is a falling vertex, and so it gets added to queue Q[j].
Based on the description of the procedure PROCESS-FREE-
VERTICES, and using Lemmas 4.1 and 4.2, we can conclude
the following.

Lemma 4.6: After ith iteration of the for loop of
PROCESS-FREE-VERTICES, the free vertices are present only
in the queues at level < i, and for all vertices not belonging
to these queues the two invariants holds.

Lemma 4.6 establishes that after termination of procedure
PROCESS-FREE-VERTICES, there are no free vertices at level
≥ 0 and the two invariants get restored globally.

4.3. Analysis of the algorithm

Processing deletion or insertion of an edge (u, v) begins
with decrementing or incrementing φu(i) and φv(i) for all
levels i ≥ max(LEVEL(u), LEVEL(v)). The computation
associated with this task over a sequence of t updates will
be O(t log n). This task may be followed by executing
the procedure PROCESS-FREE-VERTICES. We would like to
mention an important point here. Along with other process-
ing, the execution of this procedure involves INCREMENT-
φ() and DECREMENT-φ() operations. However, as implied
by Observation 4.1, in our analysis we can safely ignore the
computation involving DECREMENT-φ() operations.

Our analysis of the entire computation performed while
processing a sequence of t updates is along similar lines to
the 2-LEVEL algorithm. We visualize the entire algorithm as
a sequence of creation and termination of various matched

epochs. All we need to do is to analyze the number of epochs
created and terminated during the algorithm and computation
involved with each epoch.

Let us analyze an epoch of a matched edge (u, v). Let
this epoch got created by vertex v at level j. So v would
have executed GENERIC-RANDOM-SETTLE and selected u
as a random mate from level < j. Note that v must be
owning less than 2j+1 edges and u would be owning at most
2j edges at that moment. This observation and Lemma 4.4
imply that the computation involved in creation of the epoch
is O(2j). Once the epoch is created, any update pertaining
to u or v will be performed in just O(1) time until the epoch
gets terminated. Let us analyze the computation performed
when the epoch gets terminated. At this moment one or
both of u and v become free vertices. Let v becomes free. v
executes the following task (see procedure PROCESS-FREE-
VERTICES in Figure 6). v scans all edges owned by it, which
is less than 2j+1, and disowns those edges incident from
vertices of level j. Thereafter, if v still owns at least 2j

edges, it settles at level j and becomes part of a new epoch
at level j. Otherwise, v keeps falling one level at a time.
For a single fall of v from level i to i− 1, the computation
performed involves three tasks: scanning the edges owned
by v, disowning those incident from vertices at level i, and
incrementing φw values for each neighbor w of v lying at
level less than i. All this computation is of the order of
the number of edges v owns at level i which is less than
2i+1. Eventually either v settles at some level k ≥ 0 and
becomes part of a new epoch or reaches level -1. The total
computation performed by v is, therefore, of the order of∑j

i=k 2i+1 = O(2j). This entire computation involving v
(and u) in this process is the computation associated with
the the epoch of (u, v). Hence we can state the following
Lemma.

Lemma 4.7: For any i ≥ 0, the computation associated
with an epoch at level i is of the order of 2i.
Remark 4.8: As shown in Procedure PROCESS-FREE-
VERTICES, when vertex v falls from level i to i − 1,
the instruction “φv(i) ← |Ov|” is executed. For the sake
of analysis, this instruction can be viewed as a total of
|Ov| increment operations on φv(i) starting from 0. Note
that this does not increase the asymptotic bound obtained
in Lemma 4.7. Even though φv(i) is not initialized by
increment operation, by analyzing the above instruction in
this way we can claim that Observation 4.1 still holds.

Let us now analyze the number of epochs terminated
during any sequence of t updates. An epoch corresponding
to edge (u, v) at level i could be terminated if the matched
edge (u, v) gets deleted. However, it could be terminated by
any of the following reasons also.
• u or v get selected as a random mate by one of their

neighbors present at LEVEL > i.
• u or its mate starts owning 2i+1 or more edges.
Each of the above factors render the epoch induced. We



shall assign the cost of each induced epoch to the epoch
which led to the destruction of the former. For this objective,
we now introduce the notion of computation charged to an
epoch at any level i. Note that no epoch is created at level
-1 as the vertices at level -1 are always free. If i = 0, the
computation charged to the epoch is the actual computation
performed during the epoch which is O(1). For any level
i > 0, the creation of an epoch causes destruction of at
most two epochs at levels < i. The computation charged to
an epoch at level i > 0 is defined recursively as the actual
computation cost of the epoch and the computation charged
to at most two epochs destroyed by it at level < i. This
definition and Lemma 4.7 immediately lead to the following
lemma.

Lemma 4.9: Computation charged to an epoch at level i
is O(i2i).
Henceforth we just proceed along the lines of the analysis
of our 2-LEVEL algorithm. We need to calculate the com-
putation charged to all the natural epochs that are created
during any sequence of t updates. Let us define level of
an update, say insertion or deletion of edge (u, v), as
max(LEVEL(u), LEVEL(v)). We partition all the t updates
into their respective levels. Let ti edge deletions among these
t updates occur at level i. The proof of the following lemma
proceeds exactly along the lines of Lemma 3.5.

Lemma 4.10: The number of natural epochs terminated
at level i is O(ti/2i) on expectation and O(ti/2i + log n)
with high probability.
It thus follows from Lemma 4.9 and Lemma 4.10 that the
computation charged to all natural epochs terminated at level
i is O(iti) in expectation and O(iti + i2i log n) with high
probability. Summing up for all the levels, we can conclude
the following lemma.

Lemma 4.11: For any sequence of t updates, the compu-
tation charged to all the natural epochs which get terminated
is O(t log n) in expectation and O(t log n + n log2 n) with
high probability.
The total computation cost associated with t updates is equal
to the computation cost charged to all the natural epochs.
It follows from Lemma 4.11 that the expected computation
charged to all natural epochs which gets terminated during
t updates is O(t log n). The computation charged to all the
natural epochs which are alive at the end of t updates is
anyway bounded by O(t log n). Hence we can conclude the
following result.

Theorem 4.1: Starting from an empty graph on n vertices,
a maximal matching in the graph can be maintained over any
sequence of t insertion and deletion of edges in O(t log n)
time in expectation and O(t log n+n log2 n) time with high
probability.

5. CONCLUSION

We presented a fully dynamic algorithm for maximal
matching which achieves expected amortized O(log n) time

per edge insertion or deletion. Maximal matching is also
2-approximation of maximum matching. It would be a chal-
lenging problem to see if c-approximate maximum matching
for c < 2 can also be maintained in O(log n) update time.
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APPENDIX

Alternate proof for Lemma 3.5 : Consider the first epoch
which is terminated during a sequence of t updates. Let at
the moment of its creation, its owner owned M edges. It can
be seen that its duration is a random variable Z distributed
uniformly in the range [1...M ]. Using the law of conditional
expectation, that is, E[Xt] = E[E[Xt|Z]], and setting yt =
E[Xt], we obtain the following useful recurrence.

yt =

{
1
M

∑M
i=1(yt−i + 1) for t ≥M

1
M

∑t
i=1(yi−1 + 1) for 0 < t < M

(3)

where y0 = 0 and y1 = Pr[Z = 1] = 1/M . By subtracting
the recurrence of yt−1 from yt, we obtain yi ≤

(
1 + 1

M

)M−
1 ≤ e for i ≤ M . Using yi ≥ yi−1, one can verify that
the solution for the recurrence in Equation 3 is given by
yt ≤ e + c t

M for c ≥ 2.
Notice that this proof does not rely on the independence

of the random numbers.


